
Abstract
In e Laws of Cool, Liu (2004) argues that the art book Agrippa (A Book of the
Dead) (Gibson, 1992) is an exhibit of destructive creativity. According to Liu, the book’s
great auto-da-fé occurs when the soware program, which is included with the book,
displays an electronic poem, and then self-encrypts, a mechanism that destroys or
“permanently disappears” (p. 340) the poem. is article argues that Liu’s
understanding of encryption is incorrect. Encryption is not destruction because
enciphered text is necessarily subject to cryptanalysis (“cracking”). Relatedly, this
article demonstrates that Kirschenbaum’s thesis of “no round trip” is mistaken
(Kirschenbaum, Reside, & Liu, 2008). Agrippa was fully cracked and reverse-
engineered in the course of an online, global cryptanalysis challenge. is article
describes the forensic details of Agrippa and its cryptographic routines.

Keywords
Cryptography; Code; Art; New media art; Crowdsourcing

In 1992, cyberpunk author William Gibson was commissioned to write a short poem
to be included in a noir art book published by Kevin Begos, Jr. and designed by Dennis
Ashbaugh. e result was Agrippa (A Book of the Dead). is lavishly decorated book
contains copperplate aquatint etching of simulated DNA gel electrophoresis, long DNA
sequences from the bicoid morphogen gene of the fruitfly, and a number of faded

1

Scholarly and Research 

Communication

volume 4 / issue 3 / 2013

Quinn DuPont is a PhD
candidate in the Faculty of
Information at the University
of Toronto, Canada. Email:
quinn.dupont@utoronto.ca .

Cracking the Agrippa Code: Cryptography for the Digital Humanities

Quinn DuPont
University of Toronto

CCSP Press
Scholarly and Research Communication
Volume 4, Issue 3, Article ID 0301126, 8 pages
Journal URL: www.src-online.ca
Received May 31, 2013, Accepted March 8, 2013, Published June 3, 2013

DuPont, Quinn. (2013). Cracking the Agrippa Code: Cryptography for the Digital Humanities.
Scholarly and Research Communication, 4(3): 0301126, 8 pp.

© 2013 Quinn DuPont. is Open Access article is distributed under the terms of the Creative
Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc-
nd/2.5/ca), which permits unrestricted non-commercial use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by-nc-nd/2.5/ca
http://creativecommons.org/licenses/by-nc-nd/2.5/ca
http://www.src-online.ca
mailto:quinn.dupont@utoronto.ca


vintage advertisements (the book was published in two versions, the so-called “small”
version being less elaborate) (Liu, Hehmeyer, Hodge, Knight, Roh, Swanstrom, &
Kirschenbaum, 2008). ese material furnishings portray the ubiquity of codes, the
way they come into being, and how they are forgotten. Additionally, a 3.5” diskette was
embedded in the back of the book. is diskette contained a Mac System 7 program
that, when run, scrolled Gibson’s poem on screen. e poem, in keeping with the motif
of the book, tells about memory, loss, nature, and mechanism, all framed by a Kodak
photo album.

When released in 1992, the poem attracted considerable attention, but due to the
extremely limited print run, very few people have seen the book or the poem first-
hand. In an interesting twist of fate, a transcript and then a video recording of the
poem surfaced online (Kirschenbaum, 2008). ese early leaks (surreptitiously
recorded) came from a public showing of the soware, known as the “e
Transmission,” held in e Kitchen, an art space in New York City. For over a decade
this was the only source of information about Agrippa. In 2005, Alan Liu and a team of
graduate students created the scholarly site, e Agrippa Files, and working in
collaboration with Matthew Kirschenbaum at the Maryland Institute for Technology in
the Humanities and the Digital Forensics Lab, recovered a bit-for-bit copy of the
application, along with numerous archival documents detailing the production of
Agrippa (Liu et al., 2008).

is article lays the groundwork for correcting a common misconception of
cryptography. Liu calls Agrippa an “exhibit” of his thesis of “destructive creativity,” in
large part because he believes the cryptographic mechanism in Agrippa erases the poem
once it is displayed. I will show that Agrippa is not destroyed when run, inductively
pointing to the conclusion that cryptography necessarily excludes destruction (a
conclusion suggested here, but not fully developed). Additionally, I will show how
Agrippa does not self-encrypt, although a particular kind of self-destruction does occur.
is strange self-destruction leaves the ciphertext untouched, so that cryptanalysis of
the poem is possible even aer the disk has been run. Contra Kirschenbaum, I argue
that Agrippa does indeed “round-trip” (Kirschenbaum, Reside, & Liu, 2008). 

By revealing the forensic details of Agrippa, I will show that cryptography is a rich field
of study for digital humanities. I believe that cryptography has been hitherto ignored
by digital humanists because it has been thoroughly black-boxed (Latour, 1988),
typically construed in technical terms as a form of “secrecy” (Shannon, 1949). is view
is historically anachronistic – cryptography has a long and diverse history – and it is
better conceptualized as a special kind of writing system (an important issue, but a
matter to be taken up elsewhere). Agrippa is a particularly rich example and has
received considerable attention already (Liu et al., 2008), but it is one object in the
species of cryptographic works, and such works have traditionally been ignored by the
humanities. I show how collaborations (in this case, crowdsourced collaboration) can
interrogate cryptographic objects and yield a rich analysis. Digital Humanities is ideally
suited to make novel contributions to this under-conceptualized domain.

is forensic description of Agrippa is the result of an online cracking challenge that I
created to marshal the expertise needed to crack Agrippa. e result of this challenge

2

Scholarly and Research 

Communication 

volume 4 / issue 3 / 2013

DuPont, Quinn. (2013). Cracking the Agrippa Code: Cryptography for the Digital Humanities.
Scholarly and Research Communication, 4(3): 0301126, 8 pp.



was that Agrippa was successfully reverse-engineered and tools were implemented to
extract the ciphertext, crack it, and display the original plaintext. is interactive
project is hosted online at http://crackingagrippa.net .

Forensic description of Agrippa 
When Agrippa was first published there was considerable ambiguity about the poem’s
“mechanism.”  Some had suggested that it was a destructive virus, or that it triggered
automatically when the disk was inserted into a computer. When Liu and
Kirschenbaum began their forensic investigation of the soware, they discovered that it
was relatively easy to make a bit-for-bit copy of the disk using modern tools (Linux’s
dd). While no virus or automatic triggering was found, the team discovered that, as
anticipated, the program would run only a single time. Of course, with a digital copy
from the pristine original disk, infinite copies could be made. e program could be
run time and time again, simply throwing away the “destroyed” version aer each run.
Based on information in the archival documents, Liu and Kirschenbaum assumed that
the “self-destruct” mechanism was a (re-)encryption of the poem. While this guess
turned out to be incorrect, running the program does result in a kind of digital auto-
da-fé (it does “self-destruct”) (Liu, 2004). Cryptography is central to the mechanism,
but not as part of its self-destruction.

In conjunction with the interactive tools available online (as noted above), the
following description corrects misconceptions about the technical workings of Agrippa.
is exploration demonstrates that the cryptography in Agrippa was not used for
destruction, but does contribute vitally to the aesthetic performance of Agrippa.
Additionally, these interactive tools demonstrate that a round trip is possible: running
the program results in a corrupted binary, but the ciphertext can still be extracted and
cryptanalyzed, and consequently returning the original poem. 

Even though the cryptographic algorithm turned out to be very insecure, even for its
release in 1992, I quickly discovered that cracking Agrippa was a considerable technical
challenge. Of course, without the prior efforts of e Agrippa Files, cracking Agrippa
would have been a non-starter, since the obscurity of physical copies meant that there
was no readily available binary before the creation of e Agrippa Files. But, even with
the archival documents and the binary, aer several weeks attempting cryptanalysis, I
realized that I would need to enlist outside help. 

I decided that I would marshal help by creating an online “cracking challenge.”
Cracking challenges are relatively common in some subcultures on the Web, but this
one was complicated by the fact that Agrippa had been developed 20 years prior and
seemed to follow very few industry practices. Cracking Agrippa requires knowledge of
1992-era Macintosh soware development processes, tools, and languages. And once
the soware yields the ciphertext, the would-be cracker must possess skills of
cryptanalysis.

Once the challenge website was launched – strategically tied to the cyberpunk ethos of
William Gibson – interest in the project was considerable. I knew that my best chance
of success was to tap into the hacker community, so I used social media to advertise the
project narrowly. Within 12 hours, one of my advertisements was picked up by Cory

3

Scholarly and Research 

Communication

volume 4 / issue 3 / 2013

DuPont, Quinn. (2013). Cracking the Agrippa Code: Cryptography for the Digital Humanities.
Scholarly and Research Communication, 4(3): 0301126, 8 pp.

http://crackingagrippa.net


Doctorow at the blog Boing Boing, and with its massive readership, many other large
technology-focused websites also began to spread the word. Eventually the locus of
press activity crossed from technology sub-cultures to the mainstream. While the
mainstream press brought many curious eyes, my website statistics revealed that very
few people had the necessary skills (not to mention the inclination) to make an
attempt. In the end, five submissions were received, all of which were deemed
“successful” a loose criteria that crystallized around a working re-implementation of
the cryptographic routines.

From the cracking challenge, I learned a couple of lessons in digital humanities project
management, especially with respect to public-facing projects. I discovered that design
and imagery matters, even if the time invested is not for your target audience. A tiny
fraction of the website visitors stayed for longer than 30 seconds, most just long
enough to send off a link to Twitter. Yet, this groundswell of activity was necessary to
lure the tiny fraction that did possess the skill and inclination to contribute. In a
similar vein, it pays to set up the project properly, providing all the necessary
information and making it as easy as possible for people to engage. Finally, contests
and other processes of gamification are typically utilized by the marketing industry but
rarely employed for academic projects. Setting up a project in such a way requires a
light touch, especially with respect to ethical concerns, but the outcome can be both
beneficial to the researcher and fun for the participant. 

Aer carefully working through the submissions with the contestants (who provided
the substance of this account), I discovered that there are four main aspects to the
Agrippa program: the compiled binary, the main cryptographic algorithm,
the encryption effect that runs aer the poem finishes scrolling, and the “self-destruct”
mechanism that prohibits running the program more than once.

THE COMPILED BINARY
e Agrippa program was developed using Macintosh Allegro Common Lisp, possibly
version 1.2.2 or 1.2.3, and bundled as a self-extracting binary. As mentioned in e
Agrippa Files archival documents, the initial plan for an auto-run, virus mechanism
was never developed (Kirschenbaum, Reside, & Liu, 2008), and while there are some
tricks to impede reverse-engineering the program, the programmer’s boasts that it
would be impossible to run through a debugger were unfounded. e Macintosh Lisp
compiler uses Lempel-Ziv-Welch (LZW) compression, with the poem stored as
encrypted text in a string variable (“zi”) (one contest submission suggested that
variable names may correspond to non-English words, in this case, “zi” means “words”
in Chinese). is variable is encoded in the MacRoman character set, but only
uses ASCII characters (low in the MacRoman table), so the visible effect is
indistinguishable from ASCII. Offset values were discovered for most aspects of
the Agrippa binary.

As was known in 1992 and exploited by a number of the contestants, Macintosh Lisp
contains an error (not binding a keyboard handler at a particular point) that allows
one to drop out of the program and into a Lisp Run-Eval-Print-Loop (REPL) console.
With access to the REPL, arbitrary code may be run and interaction with the variables
and routines reveals much of the source contents (however, the REPL is of limited

4

Scholarly and Research 

Communication 

volume 4 / issue 3 / 2013

DuPont, Quinn. (2013). Cracking the Agrippa Code: Cryptography for the Digital Humanities.
Scholarly and Research Communication, 4(3): 0301126, 8 pp.



utility because many variables are uninitialized, so constants are incorrect). By
exploiting this error, it was discovered that the shipped production code does not
exactly match the archived (partial) source code printout from e Agrippa Files. is
suggests that the archival document was from an earlier stage of development. Several
routines either changed names or no longer exist, e.g., UN-WAYMUTE-IT, UN-
PERMUTE-IT, and UN-ROLL-THE-TEXT (which is thought to correspond to
UN-ROLL-ZI).

THE CRYPTOGRAPHIC ALGORITHM
e Agrippa poem is pre-encrypted and stored as a string variable in the program. e
ciphertext is not visible in the binary due to the LZW compression. All contestants
discovered that the cryptographic algorithm is a custom Rivest, Shanker, Aldemann
(RSA) function that encrypts in three-character blocks, with additional “bit-
scrambling” permutations (a kind of simple substitution cipher). Because the poem
comes pre-encrypted, there is no encryption routine in the program: the program
simply loads the ciphertext, decrypts it to memory, and then abandons the plaintext
(still in memory). As proof of this, the same decryption routine can work on a “fresh”
disk as well as previously-run “corrupted” disk (more on the “corruption” below); two
contestants implemented a tool to decrypt from the compiled binary in either state
(requiring reverse-engineering of the LZW compression).

e cryptography is applied identically and independently to three-character blocks
(resulting in cryptographic weaknesses; see below). On each block the cryptographic
routine performs three distinct steps: first a bit permutation (substitution cipher) that
converts three 8-bit characters into two 12-bit characters, then an RSA transformation
using a 12-bit key, and finally another bit permutation that converts the two 12-bit
characters back into three 8-bit characters (corresponding to ASCII-encoded text).

e RSA cryptography has a public modulus of 4,097 (from primes 17 x 241), and a
public exponent of 11. Due to the extremely short bit-length of the public modulus and
exponent, the private exponent can be found easily (either through brute force or
the Chinese Remainder eorem), and was revealed to be 3,491 (the private modulus
is always the same as the public modulus, 4,097). So the RSA encryption process is to
take some number x to the 3491st power, modulus 4,097; however, remember that the
encryption routine is not present in Agrippa, and was reverse-engineered once the
private exponent was discovered. 

Evidently the anonymous Agrippa programmer was either undecided or confused
about what kind of encryption to employ, remarking in a letter that the cryptography
would be similar to both Data Encryption Standard (DES) and RSA (the prior being a
symmetrical key cryptography algorithm, the latter asymmetrical): “another info
source would be anything on the Data Encryption standard or mathematical works by
Rivest, Shanker [sic], Aldemann [sic]” (Anonymous, 1992,  p. 7). Likewise, the
cryptographic routines are named with references to DES, even though they are RSA.

e anonymous programmer attempted to strengthen the cryptography by using a
more sophisticated mechanism for block enciphering (where the same key is re-used
for each block, but ideally “mixed” with the neighboring block). e programmer

5

Scholarly and Research 

Communication

volume 4 / issue 3 / 2013

DuPont, Quinn. (2013). Cracking the Agrippa Code: Cryptography for the Digital Humanities.
Scholarly and Research Communication, 4(3): 0301126, 8 pp.



remarked, “[t]he value, both character and numerical, of any particular character is
determined by the characters next to it, which from a cryptoanalysis [sic] or code-
breaking point of view is an utter nightmare” (Anonymous, 1992, p. 2). Yet in reality the
encryption is applied identically to each three-character block, in a mode of operation
known as Electronic Codebook (ECB). is simple mode of operation has many
cryptographic weaknesses, most visibly the fact that identical blocks will encrypt to the
same result. For example, in the plaintext of the poem, there are numerous sections of
three consecutive spaces which encrypt to “space, e with circumflex, backslash,” or in
decimal 20 136 92 (with quotes added for clarity, displayed as ASCII: “ ê\”). Even
without reverse-engineering the algorithm, this weakness is significant and exposes the
ciphertext to old-fashioned statistical analysis (where common three-letter words or
three-letter combinations would be visible in the ciphertext). Similarly, the three-
character block size and ECB mode of operation explain the curious two spaces at the

6

Scholarly and Research 

Communication 

volume 4 / issue 3 / 2013

DuPont, Quinn. (2013). Cracking the Agrippa Code: Cryptography for the Digital Humanities.
Scholarly and Research Communication, 4(3): 0301126, 8 pp.

Figure 1: Contestant Jeremy Cooper’s graphical 
depiction of the decryption process. 

Source: http://www.crackingagrippa.net/submissions/jeremy_cooper.html

http://www.crackingagrippa.net/submissions/jeremy_cooper.html


end of the poem (Wiedijk, 2011). Rather than signalling the end of the poem as
Wiedijk opined, the two spaces at the end of the poem are needed to pad the block,
otherwise the cryptographic routine would fail.

When Agrippa was released in 1992, the United States famously classified all
cryptographic materials as munitions and restricted the export of “strong”
cryptography (Diffie & Landau, 2007). Agrippa was seen by cipherpunks and computer
scientists as a challenge to these stifling and backwards cryptography export controls.
Yet given the extremely short key-length (12 bits), Agrippa would never have been
prevented from export – in 1992 the United States permitted an RSA modulus of 512
bits. Indeed, the political involvement of John Perry Barlow and the Electronic Frontier
Foundation was superfluous given that Agrippa would not have been considered strong
cryptography (Barlow, 1992).

ENCRYPTION EFFECT
When Agrippa is run, the poem slowly scrolls down the screen, and once the poem has
finished scrolling, it displays an encryption effect, seemingly to evoke the idea that the
poem is re-encrypted. As discussed above, there is no RSA encryption algorithm in the
binary; however, by running the plaintext through a permutation routine (re-purposed
from the main decryption algorithm), the plaintext is effectively encrypted using a
simple substitution cipher. While this is a re-encryption of the plaintext, it is actually
only for visual effect since the ciphertext generated by the substitution cipher is not
saved back to disk, but is instead displayed and then abandoned. Once Agrippa is run,
only one change is saved to disk: the “self-destruct” mechanism.

THE “SELF-DESTRUCT” MECHANISM
Agrippa famously runs only a single time. ere are a number of possible mechanisms
to cause a self-modifying program to run only once. For example, one could flip a
switch in the binary that alerts the main routine that the program has previously been
run, or re-encrypt the data and throw the key away (possibly generated dynamically
with runtime variables), and so on. e anonymous programmer of Agrippa chose a
simple mechanism: write a large string of data over a portion of the binary that
contains necessary run routines. In the archived source code printout, this self-destruct
mechanism wrote 40,000 ASCII characters (ASCII code 255) to a specified offset,
leaving a string of 320,000 binary 1’s to corrupt the program. Evidently, at some later
stage of development, someone thought it would be more in keeping with the theme to
write a fake genetic sequence (CTAG’s) instead of merely 1’s.

is self-destruct routine is called MAKE-SOME-SHIT, and is located in the archival
source code listing halfway across page three and the missing page four. One contestant
speculated that page four of the source code listing might have been omitted from the
Agrippa Files archive due to the presence of the word “SHIT” in the routine name. It
was revealed that MAKE-SOME-SHIT uses a fixed seed to call the Mac Toolbox
Random Number Generator, which saves 6,000 characters (either C, T, A, or G) to the
disk (at offset 680168). While the offset chosen for self-destruction does effectively
corrupt the program, it does not destroy the ciphertext. Two cryptanalysis
implementations can decrypt the poem from either a “fresh” or corrupted binary, since
the self-destruct mechanism le the ciphertext intact.

7

Scholarly and Research 

Communication

volume 4 / issue 3 / 2013

DuPont, Quinn. (2013). Cracking the Agrippa Code: Cryptography for the Digital Humanities.
Scholarly and Research Communication, 4(3): 0301126, 8 pp.



Conclusion 
Cracking the Agrippa code is yet another performance of this fascinating artifact. I
showed that while Liu’s argument about the “destructive creativity” of encryption is
incorrect, something of equal fascination has taken its place. Additionally,
Kirschenbaum’s argument that there is “no round trip” is mistaken, but this mistake
suggests that much work is needed to better conceptualize cryptography. By revealing
the mechanism in Agrippa, I showed how cryptography does round trip, laying the
groundwork for a more philosophically robust re-conceptualization of cryptography
(to be taken up elsewhere). I suggested that multidisciplinary or even public
collaborations are a fruitful method for digital humanists interested in interrogating
complex technical objects. As is oen the case, the success of the cracking challenge
was due in large part to the positioning and “marketing” of the project, piquing interest
and generating a groundswell of activity. I have shown that the interpretation of
cryptography and other code systems should become a matter for digital humanists,
especially those in critical code studies and soware studies (Fuller, 2008). 

References
Anonymous. (1992, March 28). Letter from Programmer (Item #D6) (transcription). The Agrippa

Files. URL: http://agrippa.english.ucsb.edu/letter-from-programmer-item-d6-transcription
[October 18, 2012].

Barlow, J.P. (1992, June 11). Letter from John Perry Barlow to Kevin Begos (Item #D45)
(transcription). The Agrippa Files. http://agrippa.english.ucsb.edu/letter-from-john-perry-barlow-
to-kevin-begos-11-june-1992-itemd45-transcription [October 19, 2012].

Diffie, W., & Landau, S. (2007). The export of cryptography in the 20th and the 21st centuries. In Karl
de Leeuw & Jan Bergstra, (Eds.), The history of information security: A comprehensive handbook.
Elsevier, pp. 725-736.

Fuller, M. (2008). Software studies: A lexicon. Cambridge, MA: MIT Press.
Kirschenbaum, M.G. (2008). Mechanisms: New media and the forensic imagination. Cambridge, MA:

MIT Press.
Kirschenbaum, M.G., Reside, D., & Liu A. (2008). No Round Trip: Two New Primary Sources for

Agrippa. URL: http://agrippa.english.ucsb.edu/kirschenbaum-matthew-g-with-doug-reside-and-
alan-liu-no-round-trip-two-new-primary-sources-for-agrippa [October 19, 2012].

Latour, B. (1988). Science in action: How to follow scientists and engineers through society (REP.)
Cambridge, MA: Harvard University Press.

Liu, A. (2004). The laws of cool: Knowledge work and the culture of information. Chicago, IL: University
of Chicago Press.

Liu, A., Hehmeyer, P., Hodge, J., Knight, K., Roh, D., Swanstrom, E., & Kirschenbaum, M. (2008). The
Agrippa Files. URL: http://agrippa.english.ucsb.edu/ [October 18, 2012].

Shannon, C. E. (1949). Communication theory of secrecy systems. Bell System Technical Journal, 28(4),
656-715.

Wiedijk, F. (2011, July 17). Original text of Gibson’s “Agrippa” poem extracted from disk. URL:
http://agrippa.english.ucsb.edu/post/documents-subcategories/the-disk-and-its-code/original-
text-of-gibsons-agrippa-poem-extracted-from-disk [October 19, 2012].

8

Scholarly and Research 

Communication 

volume 4 / issue 3 / 2013

DuPont, Quinn. (2013). Cracking the Agrippa Code: Cryptography for the Digital Humanities.
Scholarly and Research Communication, 4(3): 0301126, 8 pp.

http://agrippa.english.ucsb.edu/post/documents-subcategories/the-disk-and-its-code/original-text-of-gibsons-agrippa-poem-extracted-from-disk
http://agrippa.english.ucsb.edu/post/documents-subcategories/the-disk-and-its-code/original-text-of-gibsons-agrippa-poem-extracted-from-disk
http://agrippa.english.ucsb.edu/
http://agrippa.english.ucsb.edu/kirschenbaum-matthew-g-with-doug-reside-and-alan-liu-no-round-trip-two-new-primary-sources-for-agrippa
http://agrippa.english.ucsb.edu/kirschenbaum-matthew-g-with-doug-reside-and-alan-liu-no-round-trip-two-new-primary-sources-for-agrippa
http://agrippa.english.ucsb.edu/letter-from-john-perry-barlow-to-kevin-begos-11-june-1992-itemd45-transcription
http://agrippa.english.ucsb.edu/letter-from-john-perry-barlow-to-kevin-begos-11-june-1992-itemd45-transcription
http://agrippa.english.ucsb.edu/letter-from-programmer-item-d6-transcription

